2020 ANNUAL WATER QUALITY REPORT

VILLAGE OF LOOMIS

301 COMMERCIAL ST. PO BOX 226 LOOMIS, NE 68958 (308) 876-2334

In accordance with the Nebraska's Regulations Governing Public Water Supply Systems (*Title 179 NAC 14*), the Village of Loomis is required to distribute annually it's Water Quality Reports. The 2020 Annual Water Quality Report for the Village of Loomis is now available and attached, but will **not** be mailed. If interested in obtaining a copy of this report, please call the number listed above or stop by the village office at the address also listed above.

Village Of Loomis

Annual Water Quality Report For January 1 to December 31, 2020

This report is intended to provide you with important information about your drinking water and the efforts made by the Village Of Loomis water system to provide safe drinking water.

Para Clientes Que Hablan Español: Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

For more information regarding this report, or to request a hard copy, contact.

M J PRISTAVEC 308-876-2334

If you would like to observe the decision-making processes that affect drinking water quality, please attend the regularly scheduled meeting of the Village Board/City Council. If you would like to participate in the process, please contact the Village/City Clerk to arrange to be placed on the agenda of the meeting of the Village Board/City Council.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

Source Water Assessment Availability:

The Nebraska Department of Environmental Quality (NDEQ) has completed the Source Water Assessment. Included in the assessment are a Wellhead Protection Area map, potential contaminant source inventory, and source water protection information. To view the Source Water Assessment or for more information please contact the person named above on this report or the NDEQ at (402) 471-3376 or go to http://deq.ne.gov.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Sources of Drinking Water:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up

substances resulting from the presence of animals or from human activity.

The source of water used by Village Of Loomis is ground water

Contaminants that may be present in source water include: * Microbial contaminants, such as viruses and bacteria, which

- may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

 * Inorganic contaminants, such as salts and metals, which can be not urally occurring or result from urban storm water more than the not urban storm water more than the notation water more water more than the notation water wate
- inoiganic containmants, such as sans and interas, which a be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- * Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking Water Health Notes:

Some people may be more vulnerable to contaminants in diriking water than the general population. Immunocompromised derives as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800.426.4791) or the Department of Health and Human Services, Division of Public Health, Office of Drinking Water at 402-471-2186.

quality drinking water, but cannot control the variety of materials Drinking Water (402-471-1008). http://www.epa.gov/safewater/lead or at the DHHS/DPH/Office of Drinking Water Hotline (800-426-4791), at you can take to minimize exposure is available from the Safe Information on lead in drinking water, testing methods, and steps lead in your water, you may wish to have you water tested using water for drinking or cooking. If you are concerned about exposure by flushing your tap for 30 seconds to 2 minutes before sitting for several hours, you can minimize the potential for lead used in plumbing components. When your water has been All Community water systems are responsible for providing high components associated with service lines and home plumbing. problems, especially for pregnant women and young children. If present, elevated levels of lead can cause serious health Lead in drinking water is primarily from materials and

The Village Of Loomis is required to test for the following contaminants: Coliform Bacteria, Antimony, Arsenic, Asbestos, Barium, Beryllium, Cadmium, Chromium, Copper, Cyannide, Fluoride, Lead, Mercury, Nickel, Nitrate, Nitrite, Selenium, Sodium, Thallium, Alachlor, Atrazine, Benzo(a)pyrene, Carbofuran, Chlordane, Dalapon, Di(2-ethylhexyl)adipate, Dibromochloropropane, Dinoseb, Di(2-ethylhexyl)-phthalate, Diquat, 2,4-D, Endothall, Endrin, Ethylene dibromide, Glyphosate, Heptachlor, Heptachlor, Poparlae, Lindane, Methoxychlor, Oxamyl (Vydate), Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxamyl (Vydate),

Pentachlorophenol, Picloram, Polychlorinated biphenyls, Simazine, Toxaphene, Dioxin, Silvex, Benzene, Carbon Tetrachloride, o-Dichlorobenzene, 12-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichlorobenzene, 11-Dichloropropane, 11-Dichlorobenzene, 11-Dichloropropane, 11-Dichlorobenzene, 11-Dichloropropane, 11-Dichlorobenzene, 11-Dichloropropane, 11-

How to Read the Water Quality Data Table:

The EPA and State Drinking Water Program establish the safe diniking water regulations that limit the amount of contaminants allowed in drinking water. The table shows the concentrations of detected substances in comparison to the regulatory limits. Substances not detected are not included in the table. The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore, some of this data may be older than one year. MCL (Maximum Contaminant Level) – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as feasible using the best available treatment technology. MCLG (Maximum Contaminant Level Goal) – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

AL (Action Level) – The concentration of a contaminant which, if exceeded triggers treatment or other requirements which a water

system must follow.

MRDL (Maximum Residual Disinfectant Level) – The highest level of a disinfectant allowed in drinking water.

N/A – Not applicable.

Units in the Table:

ND - Not detectable.

ppm (parts per million) – One ppm corresponds to 1 gallon of concentrate in 1 million gallons of water.

mg/L (milligrams per liter) – Equivalent to ppm.
ppb (parts per billion) – One ppb corresponds to 1 gallon of concentrate in 1 billion gallons of water.

ug/L (micrograms per liter) – Equivalent to ppb.
PCi/L (Picocuries per liter) – Radioactivity concentration unit

RAA (Running Annual Average) – An ongoing annual average calculation of data from the most recent four quarters.

LRAA (Locational Running Annual Average) – An ongoing annual average calculation of data from the most recent four quarters at each

sampling location.

90th Percentile – Represents the highest value found out of 90% of the samples taken in a representative group. If the 90th percentile is greater than the action level, it will trigger a treatment or other requirements that a water system must follow.

11 (Treatment Technique) – A required process intended to reduce the level of a contaminant in drinking water.

Date Printed: 3/23/2021

NE3113702

Microbiological	Highest No	Highest No. of Positive Samples	es	MCL			MCLG	Likely Source Of Contamination	Violations Present
COLIFORM (TCR)	In the mont positive	In the month of October, 3 sample(s) were positive	ole(s) were	Treatme	ent Technic	Treatment Technique Trigger	0	Naturally present in the environment	
Lead and Copper	Monitoring Period	90 th Percentile	Range	Unit	AL	Sites Over AL	Likely Source Of Co	Of Contamination	
COPPER, FREE	2016 - 2018	0.335	0.0341 - 0.504	ppm	1.3	0	Erosion of natural dep household plumbing.	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing.	Corrosion of
LEAD	2016 - 2018 3.49	3.49	0 - 4.09	ppb	15	0	Erosion of natural dep household plumbing.	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing.	Corrosion of
Regulated Contaminants	Collection	tion Highest	Range	Unit	MCL	MCLG	Likely Source Of Co	Of Contamination	

							The state of the s
Erosion of natural deposits	0	15	pCi/L	10.6	10.6	4/24/2019	GROSS ALPHA, INCL. RADON & U
Likely Source Of Contamination	MCL MCLG	MCL	Unit	Range	Highest Value	Collection Date	Radiological Contaminants
Erosion of natural deposits	50		ppb 50	5.52 p	5.52 5	10/22/2018	SELENIUM
Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	10	0	ppm 1	5.51 - p	10 5	7/20/2020	NITRATE-NITRITE

BARIUM

10/22/2018

3.72

3.72

ppb

Discharge from steel and pulp mills; Erosion of natural deposits.

Discharge from drilling wastes; Discharge from metal refineries; Erosion of natural

Erosion of natural deposits; runoff from orchards; runoff from glass and electronics

0.0841

0.0841

ppm

a) 2

700

deposits.

ARSENIC

11/18/2020

2.61

2.61

ppb

6

0

production wastes.

Unregulated Water Quality Data	Collection Date	Highest Value	Range	Unit	Secondary MCL
SULFATE	1/7/2019	78.6	55.1 - 78.6	mg/L	250
During the 2020 calendar year, we had the below noted violation(s) of drinking water regulations.	iolation(s) of drinking wate	r regulations.			
Violation Type	Category	Analyte			Compliance Period
No Violations Occurred in the Calendar Year of 2020					Application and the second
The second secon					

The Village Of Loomis has taken the following actions to return to compliance with the Nebraska Safe Drinking Water Act:

Additional Required Health Effects Language:

samples than allowed and this was a warning of potential problems. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other potentially harmful bacteria may be present. Coliforms were found in more

There are no additional required health effects violation notices.

During the past year, we were required to conduct one Level 1 assessment. One Level 1 assessment was completed. In addition, we were required to take one corrective action and we completed that action.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments